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ABSTRACT 

 This paper deals with hydromagnetic non-Newtonian flow and heat transfer in 

a rotating channel. Constitutive equations of momentum, energy and continuity are 

framed. These equations are solved with the involved boundary conditions. Graphs and 

tables are drawn after numerical and computational analysis of the expressions of 

velocity and temperature of the fluid with the variation of fluid parameters. It is 

observed that the rotation parameter K2 influences the flow characteristics appreciably. 
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1. INTRODUCTION 

The MHD flow of a conducting liquid between two non-conducting parallel 

plates in the presence of a transverse magnetic field was studied by Hartmann1, 

Agarwal2 and Soundalgekar3. Shercliff4 and Tenazawa5 discussed the MHD flows in 

channels with rectangular and circular cross-section. The effects of wall conductances 

on hydromagnetic duct flow was studied by Chang and Lundgren6 and that on channel 

flow was investigated by Chang and Yen7. The heat transfer aspect of the channel flow 

between two electrically conducting walls was presented by Yen8. Jagdeesen9 and 

Soundalgekar10. 

The motivation of the present investigation is to extend the analysis of Chang 

and Yen11 in a rotating frame of reference. The heat transfer aspect of the problem has 
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also been discussed. We believe that the importance of studying the simultaneous 

effects of the magnetic field and the coriolis forces on the problems of fluid flow lies in 

the fact that the study may have some bearing with the geophysical and astrophysical 

problems. An exact solution of the governing equations has been obtained. Nanda and 

Mohanty12 have discussed the hydromagnetic flow in a rotating channel with perfectly 

conducting walls and his results follow as a particular case from our results. They, 

however, have not studied the heat transfer characteristics. 

  

2. MHD EQUATIONS IN ROTATING FRAME 

 The MHD equations on motion and continuity in a rotating frame of reference 

for an incompressible fluid are  

 ( ) BJ1qKqvp1q2q.q
t
q 3*

0
2*




×
ρ

+∇+∇+∇
ρ

−=×Ω+∇+
∂
∂ , 

ρ
= 0*

0
KK  (1) 

  ,0q. =∇
  (2) 

  BJe


×∇=µ , (3) 

  
t
BE
∂
∂

−=×∇



, (4) 

  0B. =∇


, (5) 

 and the Ohm’s law 

  [ ]BqEJ


×+α=  (6) 

 Where q  is the velocity vector, B


 the magnetic induction. J


 the current 

density, E


 the electric field relative to the rotating frame. Ω


 the angular velocity of 

the system considering the plates and the fluid referred to the fixed inertial frame and 

p
2
1pp* 

×Ωρ−=  

p being the fluid pressure at a point whose distance from the axis of rotation is p . 

 Taking curl of the equation (6) and using (3) (5), we get the magnetic 

induction equation as 

 ( ) BBq
t
B 2

m




∇ν+××∇=
∂
∂ , (7) 
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Where em
1 µα=ν  is the magnetic diffusivity. 

3 MATHEMATICAL FORMULATION AND ITS SOLUTION 

 Consider the flow within a parallel plate channel (Z=±L) due to a constant 

pressure gradient in the x-direction in the presence of a uniform transverse magnetic 

induction B0 along z-axis about which the system is rotating with an angular velocity 

Ω (see Fig. 1). Considering the plates to be infinite in the x and y directions, in the 

steady state, the velocity and the magnetic field depend only on z. The velocity q , the 

magnetic flux density B


and the current density J


may be reasonably assumed as 

 q = (u, v, 0), B


 = (Bx, By, B0), J


 = (jx, jy, 0) (8) 

Making use of (2.8) in (2.3), we get 

 ,
dz

dB
j y
xe −=µ  ,

dz
dBj x

ye −=µ  (9) 

 Under the assumption (8), equations (2) and (5) are automatically satisfied. 

Using (8) and (9) in (1) and (7), we get 

 −2Ωu = − 
dz

dBB
dz

udK
dz

ud
x
p1 x

e

0
3

3
*
02

2*

ρµ
++ν+

∂
∂

ρ
, (10)

 2Ωu = ν
dz

dBB
dz

ud y

e

0
2

2

ρµ
+  (11) 

 0 = 







+

ρµ
−

∂
∂

ρ
−

dz
dB

B
dz

dBK1
z
p1 y

y
x

x
e

*

 (12) 

  0
dz
duB

dz
Bd

002
x

2

=αµ+ , (13) 

  0
dz
duB

dz
Bd

002
y

2

=αµ+ , (14) 

 The absence of 
y
p*

∂
∂ in equation (11) implies that there is a net cross flow 

along y-axis. 

 To derive the boundary conditions on the magnetic field at the interface 

between a conducting plate and the conducting fluid, we first consider the 
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electromagnetic filed within the plate. 

 Within the solid medium (say the upper plate), we have 

 x1
)s(

x Ej α= , y1
)s(

y Ej α=   (15) 

 Where a1 is the electrical conductively of the upper plate and the superscript 

‘s’ denotes the quantities within the solid. 

 From the equation ∇×E


= 0, we get Ex = Ey = constant within the solid 

boundaries as well as within the fluid. Now using (15) in the equation Je


µ =∇×B


, one 

gets 

 −
dz

dB )s(
x  µe a1 Ey = 0  

 −
dz

dB )s(
y  µe a1 Ex = 0   (16) 

Since Ex and Ey are constants, the integration of (16) gives 

 )s(
xB  = µe a1 Ey [−L−h1+ z) 

 )s(
yB  = µe a1 Ex [L+ h1− z) (17) 

 Where we make use of the fact that Bx = By = 0 at z = L + h1. h1 being the 

thickness of the upper plate. 

 Thus at z=L i.e. at the interface between the upper plate and the fluid, we have 

from (17). 

 Ey = − 
11e

)s(
x

ha
B

µ
, Ex = 

11e

)s(
y

ha
B
µ

 at Z =L (18) 

Now within the liquid, we have 

 0aE
dz

dB
ye

x =µ− , 

 0aE
dz

dB
xe

y =µ−  at Z = L (19) 

Since the tangential component of the magnetic field is continuous at the interface 

Z=L, using (18) in (19), we get 
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 0
ha

aB
dz

dB

11

xx =+    

 0
ha

aB
dz

dB

11

xy =+  at Z = L (20) 

 

Similarly, the boundary conditions of the magnetic field at the lower plate Z = −L can 

be derived as 

 0
ha

aB
dz

dB

22

xx =−    

 0
ha

aB
dz

dB

22

yy =+  at Z = − L (21) 

 Where a2 and h2 are respectively the electrical conductivity and the thickness 

of the lower plate. 

 Introducing non-dimensional variables 

 L
Z=η ,  ν= uLux , ν= uLu y  

 bx = 
νσµ 0e

x

B
B , by = 

νσµ 0e

y

B
B

 (22) 

the equations (10), (11), (13) and (14) reduce to  

 RuK2
d
dbM

d
ud

d
udR y

2x2
2
x

2

3
x

3

c −=+
η

+
η

+
η

, (23) 

 0uK2
d
db

M
d

ud
d

ud
R x

2y2
2
y

2

3
y

3

c =+
η

+
η

+
η

, (24) 

 0
d
du

d
bd x

2
x

2

=
η

+
η

, (25) 

 0
d
du

d
bd y

2
y

2

=
η

+
η

, (26) 
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Where 

 Rc = 2

2*
0LK
ν

, non-Newtonian parameter  

 M = B0L 
2

1









ρν
σ  is the Hartmann number, 

 K2 = 
ν

Ω
2L  is the rotation parameter (27) 

 R = 







∂
∂

−
ρν x

pL *

2

3

is the dimensionless pressure gradient. 

The boundary conditions for the velocity components ux and uy are  

 ux = uy = 0 at η = ± 1 (28) 

The boundary conditions (20) and (21) of bx and by are 

 ,0b
d
db

1

xx =
φ

+
η

 ,0
b

d
db

1

yy =
φ

+
η

 at η = 1, 

 ,0b
d
db

2

xx =
φ

−
η

 ,0
b

d
db

2

yy =
φ

−
η

 at η = −1, (29) 

Where φ1 = 
L
h11

σ
σ  and φ2 = 

L
h22

σ
σ  are the dimensionless electrical conductance 

rations. 

 Introducing the complex quantities 

 u1 = ux + i uy, b = bx + i by , (30) 

equations (23) – (26) give 

  −
η

+
η d

dbM
d

ud 2
2
1

2

2 iK2u1 = −R, (31) 

 0
d
du

d
bd 1
2

2

=
η

+
η

 (32) 

Using (30), the boundary conditions (28) and (29) become 

 u1 = 0 at η = ± 1, (33a) 
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 0b
d
db

1

=
φ

+
η

 at η = 1, 

 0b
d
db

2

=
φ

+
η

 at η = −1, (33b) 

The solutions obtained for u1 and b1 satisfying the boundary conditions (33) are 

 u1 = RC1 



 −

Coshm
Coshmn1  Cos h m, (34) 

 b = R [C2η + 
m
C1 simh m n] + *

2C  (35) 

where  m = α + iβ; 

 α = ( ) 2
1

2
1442 K4MM

2
1





 + ,  β = ( ) 2

1
2

1442 K4MM
2

1




 +−  

 φ = φ1 + φ2,C1 = ( )Coshmik4mmsimhmM2
)2(m

222 +φ+
+φ   

   C2 = 2M
1 (1−2i K2C1 Cos h m), 

  C2
* = ( )

2
21

M2
R φ−φ  (1− C1 m2 cos h m) (36) 

The dimensionless current density j* is given by 

 j* = i R [C2 + C1 cos h m η], (37) 

Where j* = *
y

*
x ijj +  

 It is interesting to note from the expressions of the co-efficients C1, C2 and 

C2
* that the velocity and the current density depend only on the sum of the wall 

conductances φ1 and φ2 but the magnetic field depends on the individual values of φ1 

and φ2. 

 In the absence of rotation, that is, when K2 = 0 ,the solution (34), (35) and (37) 

reduce to the equations (10), (11) and (12) respectively of Chang and Yen7. 

 When the plates are perfectly conducting the solution (34) and (35) reduces to 
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 u1 = 



 −

Coshm
Coshmn1

m
R

2 , (38) 

 b = − 



 −η

Coshm
Coshmn

m
R

2 , m = α+iβ, (39) 

which agree with Nanda and Mohanty (1971). 

 

4 DISCUSSION OF RESULTS 

 To study the effects of wall conductances and the rotation on the 

hydromagnetic flow in a channel, we have presented the non-dimensional velocity 

and current density in Figs. (2) to (5) for various values of K2 and φ with M2 = 10.0. 

 Fig. 2a shows that for small values of rotation parameter, the profiles of ux are 

nearly parabolic having their vertex at the centre and that for a fixed value of K2, the 

maximum of ux decreases with increase in φ. As the rotation parameter K2 increases 

the velocity profiles are flattered. Fig. 2b shows that for large values of K1, the 

velocity ux increases everywhere with increases in φ. Further, the profiles of ux are 

depressed at the centre of the channel and they are symmetrical about the central line 

of the channel. It is also seen from the same figure that the rotation of the parallel 

plate channel brings in humps near the two walls indicating the occurrence of 

boundary layer near the walls. For very large K2, the coriolis force and the magnetic 

field which act against the pressure gradient, causes reversal of the flow. 

 The profiles of (−uy) have been drawn against η in Figs. (3). From these 

figures we find that the profiles of (−uy) have similar characteristics as those of ux 

when K2 is small, but when K2 is large the magnitude of uy decreases with increase in 

φ. 

 The graphs of the current density components jx
* and jy

* have been plotted 

against η in Figs. (4) and (5). It is found from Figs. (4) that for small values of K2, the 

magnitude of current density jx
* decreases at the central region of the channel and 

increases near the channel walls, but for large values of K2, the magnitude of jx
* 

increases at all points with increases in φ. From Figs. (5) it is observed that for both 

high and low rotation parameter K2, the current density jy
* decreases throughout with 

increases in φ. Further, it can be seen that both the components of current density at 
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the plates decreases with increases in either K2 or φ. 

 The non-dimensional shear-stresses components at the plate η=i due to the 

primary and the secondary flow are respectively given by  

 τx =  
1

x

d
du

=η




η

 and  τy =  
1

y

d
du

=η




η

 (40) 

 The resultant shear-stress at the plate η=1 given by 

 τR =  [ ] 2
12

y
2
x τ+τ  (41) 

The values of resultant shear-stress at the plate η=1 tabulated in Table 1 for various 

values of K2 and φ with M2 = 10.0. From the table 1, it is seen that the resultant shear-

stress at the plate η=1 always decreases with increase in either K1 or φ. For large 

values of K2, the effect of φon the shear-stress is negligible. The resultant sheer-stress 

at the plate η= −1 is equal to that at η=1. 

 Donating Qx
* and Qy

* as the non-dimensional mass flow along x and y – 

directions respectively, we have  

 Qx
* + i Qy

* = ∫
−

η
1

1
1du

2
i  

  = RC1 



 −Coshm

m
Sinhm  (42) 

The values of  
R
Q*

x and are given in Table 2 and 3 for various values of K2 and φ with 

Mx = 1.0. From the table 2. It is seen that with increase in φ, 
R
Q*

x  decreases when K2 

is small and it increases when K2 is large. For fixed value of φ, 
R
Q*

x decreases with 

increase in K2 and for large K2 the mass flow 
R
Q*

x is negligible. Table 3 shows that 









−

R
Q*

x decreases with increase in either K2 or φ. 

 For perfectly conducting walls the mass flow given by (42) should agree to 
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equation (31) of Nanda and Mohanty10. Unfortunately, a little calculation shows that 

the expression for the mass-flow given in equation (31) of Nanda and Mohanty10 is 

wrong. This renders the results presented in Tables II and III in their paper to be 

erroneous. The correct form of the equation (31) of Nanda and Mohanty10 is  

 ( ) ( )[ ])itanh(i)(RiQQ
322

yx β+α−β+α
β+α

β−α
=

ρν
+

 (43) 

Where α and β are given by equation (36). The correct results for Qx and Qy have 

been presented in Table (4a, b) for various values of M2 and K2. 

 

5. HEAT TRANSFER 

 The equation of energy for steady fully developed state is given by 

 0 = α1

















+








ρεσµ
+


















+








ρ
µ

+
2

x
2

x

p
2
e

22

p
2

2

dz
dB

dz
dB1

dz
du

dz
du

Cdz
Td  (44) 

 Where T is the temperature taken as a function of Z only, α1 is the thermal 

diffusivity and Cp is the specific heat of the fluid. The last two terms within the 

parentheses represent the viscous and Ohmic dissipations respectively. Introducing 

 θ (η) = ( ) 2
11p

2

1
r

12

1

LTTC
,P,

TT
TT

−
ν

α
ν=

−
−  (45) 

and using (22) in (44), we get 

 0
d
db

d
dbM

d
du

d
duEP

d
d

2
y

2
x2

2

2
y

2
x

cr2

2

=
































η

+







η

+







η

+







η

+
η
θ  (46) 

 Where T1 and T2 denote the temperature of the lower and upper plates 

respectively, Pr is the Prandtl number and Ec is the non-dimensional parameter. 

 The boundary conditions for θ (±) are 

 θ (−1) = 0, θ (1) = 1 (47) 

 On introducing the complex quantities, given by (30), the equation (46) 

reduces to 
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 0
d
db

d
dbM

d
du,

d
duEP

d
d 211

cr2

2

=







ηη

+
ηη

+
η
θ  (48) 

Where the over bar denotes complex conjugate. 

 Using (34) and (35), the selection of (48) satisfying the boundary conditions 

(47) is given by 

 θ (η) = ( )[ +βηαη−βηαη− SinSinhaCosCoshaMaRE
M
P

21
2

0
2

c2
r  

  +2 a0K2 (a2 Cos h αη Cos βη + a1 Sin h α η Sin β η) + 

  + 4
3

K4
a  (β2 Cos h 2α η − α2 Cos 2βη) − 

2
1  (1 + a4 + a5)η2] 

  − 4
6

K4
a  (β2 Cos h 2α η + α2 Cos 2βη)  + 

2
1  η + a7  (49) 

 Where 

 a0 = 2
144 Ma,

K4M
2

−=
+

(A7 + 2K2 a8 sin h α Sin β) 

 a2 = −M2 (A8 + 2K2 a8 Cos h α Cos β), a3 = 
2
1 M4 a8, 

 a4 = 4K2 (A8 Cos h α Cos β + A7 Sin h α Sin β), 

 a5 = 2 K4a8 (Cos h 2 α+ Cos 2β), a6 = 
2
P7 Ec R2 a8 (α2+ β2) 

 a7 = 
2
1 + 

2
1  (β2 Cos h 2α + α2 Cos 2β) +  

2
P7 Ec R2 

  [a0 M2 (a1 Cos h α Cos β − a2 Sin h α Sin β) + 

  +2 a0 K2 (a2 Cos h α Cos β + a1 Sin h α Sin β) + 
2
1  (1 + a2 − a3) 

  + 
2
1  (β2 Cos h 2α − α2 Cos 2β)], 

 a8 = 2
8

2
7 AA + , A1= ( )

α+β
αβ+

22

2

CothCot
CothCot1  
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  A2 = 
α+β
βα
22

2

CothCot
CosCosh  A3 = Sin h α Cos β 

  A4 = Cos h α Sin β 

  A5 = M2 (2 + φ, α A1 + βA2) − 2K2 (φ+) (βA1 − αA2) 

  A6 = 2K2 {2+φ (αA1+β A1} + M2 φ  

        (β A1 − αA2 − 4K2 (1−αA1 −βA1),  

  A7 + i A8 = ( ) ( )63546453 AAAAiAAAA
)i)(2(
++−

β+α+φ  (50) 

 From the expression (49) and (50), it is seen that the temperature also depends 

on the sum of the ratio of the wall conductance φ1 and  φ2. 

 To study the effects of wall conductance, rotation and Hartmann number, we 

have computed the rate of heat transfer at the plate η = 1 for Pr = .025, R=1, Ec=2.0 

and they are presented in Tables 5 and 6. From these tables, it is seen that with 

increase in either φ or M, the rate of heat transfer increases when K2 is small and 

decreases when K2 is large. It is also seen that for fixed M and φ, it increases with 

increase in K2. 

 Finally, we can conclude that the effect of electrical conductance ratio on the 

velocity field, current density, shear-stress and the rate of heat transfer is similar to 

that of the magnetic field. 

Table 1 

Values of τR for M2 = 10.0 

2K
φ  1.0 4.0 25.0 81.0 

0.0 .889157 .470461 .145360 .078904 

0.5 .657298 .426852 .144628 .078842 

1.0 .557050 .397645 .144042 .078796 

1.5 .501681 .3778592 .143576 .078760 

2.0 .466660 .363178 .143203 .078731 

∞ .312171 .279828 .140045 .078793 
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Table 2 

Values of R
Q*

x for M2 = 10.0 

2K
φ  1.0 4.0 25.0 81.0 

0.0 .173400 .046986 .002234 .000353 

0.5 .135253 .054214 .002870 .000421 

1.0 .116532 .056036 .003282 .000466 

1.5 .105751 .056316 .003570 .000498 

2.0 .098792 .056115 .003782 .000522 

∞ .067044 .050005 .005161 .000688 

 

 

Table 3 

Values of 







− R

Q*
y for M2 = 10.0 

2K
φ  1.0 4.0 25.0 81.0 

0.0 .083867 .085222 .018104 .005838 

0.5 .044513 .069692 .017921 .005829 

1.0 .031339 .060213 .017775 .005822 

1.5 .025053 0.54121 .017659 .005817 

2.0 .021440 .049949 .017568 .005812 

∞ .008851 .029155 .016800 .005777 
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Table 4a 

Values of 







νRP
Qx for perfectly conducting walls  

2
2

K
M  1.0 4.0 25.0 81.0 

0.5 .192529 .037317 .002169 .000360 

1.0 .180017 .041186 .002338 .000377 

3.0 .135045 .051175 .003003 .000447 

9.0 .072158 .050933 .004855 .000654 

12.0 .058264 .046062 .005674 .000756 

  

 

Table 4b 

Values of 







ν

−
RP
Qy for perfectly conducting walls  

2
2

K
M  1.0 4.0 25.0 81.0 

0.5 .126963 .090387 .017968 .005828 

1.0 .101528 .086570 .017933 .005826 

3.0 .048131 .070166 .017762 .005818 

9.0 .012163 .033924 .016973 .005784 

12.0 .007767 .024369 .016447 .005762 
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Table 5 

Values of 
1d

d

=η




η
θ for M2 = 10.0 

2K
φ  1.0 4.0 25.0 81.0 

0.0 .487594 .497045 .499885 .499982 

0.5 .491877 .497109 .499875 .499981 

1.0 .493200 .497076 .499862 .499980 

1.5 .493796 .497030 .499849 .499978 

2.0 .494125 .496988 .499838 .499977 

∞ .495130 .496637 .499719 .499964 

 

Table 6 

Values of 
1d

d

=η




η
θ for φ = 0 

2
2

K
M  1.0 4.0 25.0 81.0 

0.5 .484868 .497480 .499892 .499982 

10.0 .487594 .497045 .499885 .499982 

20.0 .490301 .496743 .499870 .499981 

 

Table 6 :  Values of 
1d

d

=η




η
θ for φ = 0 

2
2

K
M  1.0 4.0 25.0 81.0 

0.5 .490828 .496407 .499808 .499973 

10.0 .495130 .496637 .499719 .499964 

20.0 .497520 .497795 .499585 .499946 
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Fig. 1 :  Physical Model 
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Fig. 2a : Profiles of velocity in x-direction for low K2. 
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Fig. 2b : Profiles of velocity in x-direction for low K2. 
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Fig. 3a : Velocity profiles in y-direction for low K2. 
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Fig. 3b : Profiles of velocity in y-direction for low K2. 
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Fig. 4a : Profiles of current density jx
* for low K2. 
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Fig.4b : Profiles of current density jx
* for high K2. 
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Fig. 5a : Profiles of current density jy
* for low K2. 
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