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ABSTRACT

This paper deals with hydromagnetic non-Newtonian flow and heat transfer in
a rotating channel. Constitutive equations of momentum, energy and continuity are
framed. These equations are solved with the involved boundary conditions. Graphs and
tables are drawn after numerical and computational analysis of the expressions of
velocity and temperature of the fluid with the variation of fluid parameters. It is

observed that the rotation parameter K? influences the flow characteristics appreciably.
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1. INTRODUCTION

The MHD flow of a conducting liquid between two non-conducting parallel
plates in the presence of a transverse magnetic field was studied by Hartmann',
Agarwal® and Soundalgekar®. Shercliff* and Tenazawa® discussed the MHD flows in
channels with rectangular and circular cross-section. The effects of wall conductances
on hydromagnetic duct flow was studied by Chang and Lundgren® and that on channel
flow was investigated by Chang and Yen’. The heat transfer aspect of the channel flow
between two electrically conducting walls was presented by Yen®. Jagdeesen® and

Soundalgekar®.

The motivation of the present investigation is to extend the analysis of Chang
and Yen"! in a rotating frame of reference. The heat transfer aspect of the problem has
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also been discussed. We believe that the importance of studying the simultaneous
effects of the magnetic field and the coriolis forces on the problems of fluid flow lies in
the fact that the study may have some bearing with the geophysical and astrophysical
problems. An exact solution of the governing equations has been obtained. Nanda and
Mohanty*? have discussed the hydromagnetic flow in a rotating channel with perfectly
conducting walls and his results follow as a particular case from our results. They,
however, have not studied the heat transfer characteristics.

2. MHD EQUATIONS IN ROTATING FRAME

The MHD equations on motion and continuity in a rotating frame of reference

for an incompressible fluid are

@+(q.v)<j+2ﬁxq =—£Vp*+vV2(j+K;V3q+ljxl§, K; K (1)
ot p p p
V.4=0, (2)
nJ=VxB, 3
- 0B
VxE=—2, (@)
V.B=0, ®)

and the Ohm’s law
J=afE+GxB] (6)

Where G is the velocity vector, B the magnetic induction. J the current

density, E the electric field relative to the rotating frame. Q the angular velocity of

the system considering the plates and the fluid referred to the fixed inertial frame and
« 1 =

P’ =p- 2 pl2xP

p being the fluid pressure at a point whose distance from the axis of rotation is p.

Taking curl of the equation (6) and using (3) (5), we get the magnetic

induction equation as

%ZVX(ﬁXB)+VmV2é, (7)
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Where v = % U, is the magnetic diffusivity.

3 MATHEMATICAL FORMULATION AND ITS SOLUTION

Consider the flow within a parallel plate channel (Z=%L) due to a constant
pressure gradient in the x-direction in the presence of a uniform transverse magnetic
induction By along z-axis about which the system is rotating with an angular velocity
Q (see Fig. 1). Considering the plates to be infinite in the x and y directions, in the

steady state, the velocity and the magnetic field depend only on z. The velocity q, the
magnetic flux density B and the current density Jmay be reasonably assumed as

G=(u,v, 0), B = (B, By, Bo), J = (ix, Jy, 0) (8)
Making use of (2.8) in (2.3), we get

dB dB

uejx = _d_Zy' “ejy == dZX ) (9)

Under the assumption (8), equations (2) and (5) are automatically satisfied.
Using (8) and (9) in (1) and (7), we get

10p +Vd2u .du B, dB,

-2Qu= — = +K + , 10
pox dz2  °dz* pp, dz (10)
2 dB
20u= 3 121+ B, 25 (11)
dz® pp, dz
* dB
o= o1l B g B (12)
p oz pu, dz dz
d’B, du
e +“00‘BOE:01 (13)
d’B, du
7 HHgeBy =0, (14)
op”

The absence of a—in equation (11) implies that there is a net cross flow
y

along y-axis.
To derive the boundary conditions on the magnetic field at the interface

between a conducting plate and the conducting fluid, we first consider the
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electromagnetic filed within the plate.
Within the solid medium (say the upper plate), we have
i =0k, | =0FE, (15)
Where a; is the electrical conductively of the upper plate and the superscript

‘s’ denotes the quantities within the solid.

From the equation VxE= 0, we get E, = Ey, = constant within the solid

boundaries as well as within the fluid. Now using (15) in the equation p,J=Vx B, one

gets
dB
dZX — He ai Ey = 0
dB®
—dZy — pHedr Ex=0 (16)

Since Ex and Ey are constants, the integration of (16) gives

BE(S) He a1 Ey [—L—h1+ Z)

BY = pea; Ex [L+ hy—2) (17)

Where we make use of the fact that Bx = By = 0 at z = L + hs. hy being the
thickness of the upper plate.

Thus at z=L i.e. at the interface between the upper plate and the fluid, we have
from (17).

(s) B(S)
Healhl Hea;h,

Now within the liquid, we have

dB
*—pn.ak, =0,
4z Heaky
dB
d—zy—ueaEX =0atZ=L (19)

Since the tangential component of the magnetic field is continuous at the interface
Z=L, using (18) in (19), we get
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dB, aB,
+ =0
dz ah,
B, B g atZ=L
dz ah;

-1279 -

(20)

Similarly, the boundary conditions of the magnetic field at the lower plate Z = —L can

be derived as

dB, aB, _

dz a,h,

dB, aB

—Y 41— =0 atZ=-1L
dz a,h,

(21)

Where a, and h, are respectively the electrical conductivity and the thickness

of the lower plate.

Introducing non-dimensional variables

B
bX: BX b, = y

opByv ¢ opByv

the equations (10), (11), (13) and (14) reduce to

3 2

R, d USX +d uzx +M? db, +2K%u, =-R,
dn dn dn
du, d%u db

c——L+—L+M*—2L+2K%u, =0,

dn®  dn n

d’b, _du, _,

dn®>  dn ’

d’b, du
>+—>=0,

dn®  dn

IJSER © 2014
http://www.ijser.org

(22)

(23)

(24)

(25)

(26)


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 - 1280 -
ISSN 2229-5518

Where
* 2 \
R = KO!‘ , hon-Newtonian parameter
A%
Y
M= BoL (—j is the Hartmann number,
pv >
L2
K? = Q— is the rotation parameter (27)
A%
L op"). : : .
R= 7| "o is the dimensionless pressure gradient. Y,
pv X

The boundary conditions for the velocity components ux and uy are
Ux=uy=0atn==x1 (28)

The boundary conditions (20) and (21) of by and by are

N
db, b
dbx +&=01 _Y+_y:0, atm =1,
dn ¢, an ¢
.
db, b
o, b_g By Oy atn=-1, (29)
dn ¢, an ¢, Y

h . . .
Where ¢; = 01_:11 and ¢, = GZ—LZ are the dimensionless electrical conductance
(&) o

rations.
Introducing the complex quantities
u]_:uX+in,b:bx+iby, (30)

equations (23) — (26) give

2
‘3“21 +M23—b—2 iK2U; = -R, (31)
n n
2
d_t2’+%:o (32)
dn® dn

Using (30), the boundary conditions (28) and (29) become

up=0 atn=+1, (33a)
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@4—3:0 atm =1,

dn ¢

do b

—+—=0atn=-1, (33b)
dn ¢,

The solutions obtained for u; and b satisfying the boundary conditions (33) are

u= RC {1— COShm”} Coshm, (34)
Coshm
_ C, .. .
b= R[Con + E3|mh mn] + C, (35)

where m = o + if;

o= %[MZ(M“ +4K4)%T/2, p= %[—MZ(W +4K4)%T/2

m(¢+2)
2M?simhm + m(m?¢ + 4ik® )Coshm

¢=¢1+¢2,C1 =
1 L2
C,= W(l_ZI K°C; Cos hm),
C)' = R(dz)lT_;bZ) (1- C; m? cos h m) (36)

The dimensionless current density j* is given by

i= i R[C2 + Cy coshmn], (37)

o

Where j = i+l

It is interesting to note from the expressions of the co-efficients C;, C, and
C,  that the velocity and the current density depend only on the sum of the wall
conductances ¢1 and ¢, but the magnetic field depends on the individual values of ¢
and ¢o.

In the absence of rotation, that is, when K? = 0 ,the solution (34), (35) and (37)
reduce to the equations (10), (11) and (12) respectively of Chang and Yen'.

When the plates are perfectly conducting the solution (34) and (35) reduces to
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R Coshmn
= 1= 38
- m? [ Coshm } (38)
R Coshmn .
b= - |n-——2— | m=atip, 39
m{n Coshm} m = ot (39)

which agree with Nanda and Mohanty (1971).

4 DISCUSSION OF RESULTS

To study the effects of wall conductances and the rotation on the
hydromagnetic flow in a channel, we have presented the non-dimensional velocity

and current density in Figs. (2) to (5) for various values of K? and ¢ with M? = 10.0.

Fig. 2a shows that for small values of rotation parameter, the profiles of uy are
nearly parabolic having their vertex at the centre and that for a fixed value of K, the
maximum of uy decreases with increase in ¢. As the rotation parameter K? increases
the velocity profiles are flattered. Fig. 2b shows that for large values of K, the
velocity uy increases everywhere with increases in ¢. Further, the profiles of uy are
depressed at the centre of the channel and they are symmetrical about the central line
of the channel. It is also seen from the same figure that the rotation of the parallel
plate channel brings in humps near the two walls indicating the occurrence of
boundary layer near the walls. For very large K2, the coriolis force and the magnetic
field which act against the pressure gradient, causes reversal of the flow.

The profiles of (-uy) have been drawn against n in Figs. (3). From these
figures we find that the profiles of (—uy) have similar characteristics as those of uy
when K is small, but when K? is large the magnitude of uy decreases with increase in
d.

The graphs of the current density components j,~ and j,” have been plotted
against n in Figs. (4) and (5). It is found from Figs. (4) that for small values of K?, the
magnitude of current density j, decreases at the central region of the channel and
increases near the channel walls, but for large values of K?, the magnitude of j,
increases at all points with increases in ¢. From Figs. (5) it is observed that for both
high and low rotation parameter K2, the current density jy* decreases throughout with

increases in ¢. Further, it can be seen that both the components of current density at
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the plates decreases with increases in either K2 or ¢.

The non-dimensional shear-stresses components at the plate n=i due to the

primary and the secondary flow are respectively given by

d
T = d“X} and 1, = &} (40)
dn | dn |

The resultant shear-stress at the plate n=1 given by

TR = [rf( + ri]% (41)

The values of resultant shear-stress at the plate n=1 tabulated in Table 1 for various
values of K? and ¢ with M? = 10.0. From the table 1, it is seen that the resultant shear-
stress at the plate n=1 always decreases with increase in either K* or ¢. For large
values of K?, the effect of pon the shear-stress is negligible. The resultant sheer-stress

at the plate n= -1 is equal to that at n=1.

Donating Q,  and Qy* as the non-dimensional mass flow along x and y -
directions respectively, we have

8 1
* R *_l
Qx +1Qy _Ejlu1dn

Sinhm

=RC; { —Coshm} (42)

The values of %and are given in Table 2 and 3 for various values of K and ¢ with

*

Q,

M* = 1.0. From the table 2. It is seen that with increase in ¢, e decreases when K?

*

Q,

is small and it increases when K? is large. For fixed value of ¢, ?decreases with

*

Q,

increase in K? and for large K? the mass flow ?is negligible. Table 3 shows that
(— %J decreases with increase in either K or ¢.

For perfectly conducting walls the mass flow given by (42) should agree to
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equation (31) of Nanda and Mohanty™. Unfortunately, a little calculation shows that
the expression for the mass-flow given in equation (31) of Nanda and Mohanty™ is
wrong. This renders the results presented in Tables Il and Il in their paper to be

erroneous. The correct form of the equation (31) of Nanda and Mohanty™ is

Q, +iQy _ R(o—P)
pv (on2 +B2)3

[(ac +ip)— tanh(o +ip)] (43)

Where o and 3 are given by equation (36). The correct results for Qx and Qy have

been presented in Table (4a, b) for various values of M? and K.

S. HEAT TRANSFER

The equation of energy for steady fully developed state is given by

2 2 2 2 2
Ozald I+L [d_uj +(d—uJ + 3 (dej +(dej (44)
dz® pC,|\dz dz OHepE, |\ dz dz

Where T is the temperature taken as a function of Z only, a; is the thermal

diffusivity and C, is the specific heat of the fluid. The last two terms within the

parentheses represent the viscous and Ohmic dissipations respectively. Introducing

_ 2
o= Tl,P,=y — (45)
T,-T, %' C (T,-T)L

and using (22) in (44), we get

2 2 du 2 2 db 2
gn?+P’EC[[ddli1xj J{dng] +M2{(%) J{d_nyj =0 (46)

Where T; and T, denote the temperature of the lower and upper plates

respectively, P, is the Prandtl number and E_ is the non-dimensional parameter.
The boundary conditions for 6 (+) are
0(-1)=0,06(1)=1 (47)

On introducing the complex quantities, given by (30), the equation (46)
reduces to
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2
90 pg,|du duy e dbdbl_ (48)
dn dn dn dn dn
Where the over bar denotes complex conjugate.

Using (34) and (35), the selection of (48) satisfying the boundary conditions

(47) is given by

oM = - i ECRZ[aOM2(3.1COSh(X.1’]COSB1’]—aZSinhOﬂ]Sian)-i—

M2

+2 agK? (a2 Cos h am Cos pn +a: Sinhan Sin pn) +

+ 4724 (B Cos h 20, 1 — o Cos 2fn) — % (1+a4 +as)n’]

_a—64 (BZCOShZOLn+OLZ Cos 2fn) +1 n+as (49)
4K 2
Where
ao = #,aI:—MZ(A7+2K2 ag sin h a Sin B)
M* +4K*
a;=  —M?(Ag +2K?ag Cosha Cos ), as = %M“ as,
as=  4K?(Ag Cosha Cos B+ A; Sinh a Sinp),
as= 2 K'ag (Cosh2a+ Cos2pB), as = %EC R? ag (o%+ B9
- 1 1 2 2 P7 2
az = =+ = (B Cosh2a+a”Cos2pB)+ —LE:R
2 2 2
[ao M? (a1 Cos h o Cos B —az Sinh o Sin p) +
+2 ap K? (a2 Cos h o Cos B + a; Sinh o Sin p) + % (1+a;, —as)
" % (B% Cos h 2a. — o2 Cos 2B)],
2
as=  AZ+AL A= (1+S°t B)szh“
Cot“B+Coth“a
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Cosh’aCosp

) =

A;=CoshaSinp

As = M2 (2 + ¢, o Ap + BA2) — 2K? (0+) (BAL — alA2)
Ag = 2K2 {2+¢ (aA1+B A1} + M? ¢

~ Cot?B+Coth%a

As; =Sinh a Cos B

(B AL — 0A; — 4K? (1-aA;1 —BAY),

A;+iAg=

(¢ +2)(a+iB)

(AaAs - A4A6 ) + i(A4A5 + A3A6 )

- 1286 -

(50)

From the expression (49) and (50), it is seen that the temperature also depends

on the sum of the ratio of the wall conductance ¢1 and ¢-.

To study the effects of wall conductance, rotation and Hartmann number, we

have computed the rate of heat transfer at the plate n = 1 for P, = .025, R=1, E.=2.0

and they are presented in Tables 5 and 6. From these tables, it is seen that with

increase in either ¢ or M, the rate of heat transfer increases when K? is small and

decreases when K? is large. It is also seen that for fixed M and ¢, it increases with

increase in K2.

Finally, we can conclude that the effect of electrical conductance ratio on the

velocity field, current density, shear-stress and the rate of heat transfer is similar to

that of the magnetic field.

Values of tr for M? = 10.0

Table 1

%2 1.0 4.0 25.0 81.0
0.0 .889157 470461 .145360 .078904
0.5 .657298 426852 144628 .078842
1.0 .557050 .397645 144042 .078796
1.5 .501681 3778592 .143576 .078760
2.0 466660 .363178 .143203 .078731
o 312171 .279828 .140045 .078793
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Table 2

Values of Q%for M? =10.0

- 1287 -

%2 1.0 4.0 25.0 81.0
0.0 173400 .046986 .002234 .000353
0.5 135253 .054214 .002870 .000421
1.0 116532 .056036 .003282 .000466
15 105751 .056316 .003570 .000498
2.0 .098792 .056115 .003782 .000522
o0 .067044 .050005 .005161 .000688

Table 3
Values of [— Q%j for M?=10.0

%2 1.0 4.0 25.0 81.0
0.0 .083867 .085222 .018104 .005838
0.5 .044513 .069692 .017921 .005829
1.0 .031339 .060213 017775 .005822
15 .025053 0.54121 .017659 .005817
2.0 .021440 .049949 .017568 .005812
o0 .008851 .029155 .016800 .005777
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Table 4a

Values of (RQ_PX\J for perfectly conducting walls

M%<2 1.0 4.0 25.0 81.0
0.5 192529 .037317 .002169 .000360
1.0 .180017 .041186 .002338 .000377
3.0 .135045 .051175 .003003 .000447
9.0 .072158 .050933 .004855 .000654
12.0 .058264 .046062 .005674 .000756

Table 4b
Values of (— Fiyvjfor perfectly conducting walls

M%<2 1.0 4.0 25.0 81.0
0.5 126963 .090387 .017968 .005828
1.0 101528 .086570 .017933 .005826
3.0 .048131 .070166 .017762 .005818
9.0 .012163 .033924 .016973 .005784
12.0 .007767 .024369 .016447 .005762
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Table 5

- 1289 -

Values of d—e} for M? = 10.0
dn -
V 1.0 4.0 25.0 81.0
KZ
0.0 487594 497045 499885 499982
0.5 491877 497109 499875 499981
1.0 493200 497076 499862 499980
1.5 493796 497030 499849 499978
2.0 494125 496988 499838 499977
0 495130 496637 499719 499964
Table 6
Values of d—e} forg =0
dn .
M? ) 1.0 4.0 25.0 81.0
K
0.5 484868 497480 499892 499982
10.0 487594 497045 499885 499982
20.0 490301 496743 499870 499981
do _
Table 6 : Values of —} forg =0
dn |,
n
M? ) 1.0 4.0 25.0 81.0
K
0.5 490828 496407 499808 499973
10.0 495130 496637 499719 499964
20.0 497520 497795 499585 499946
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Fig. 1 : Physical Model
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Fig. 2a : Profiles of velocity in x-direction for low KZ.
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Fig. 2b : Profiles of velocity in x-direction for low K2,
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K2 =|

Fig. 3a : Velocity profiles in y-direction for low K2
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Fig. 3b : Profiles of velocity in y-direction for low K2,
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Fig. 4a : Profiles of current density jx for low K2,
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Fig.4b : Profiles of current density jx for high K2
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Fig. 5a : Profiles of current density j,” for low KZ,
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